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ABSTRACT 

Healthcare decision-support systems increasingly rely on machine-learning (ML) to analyze patient 

data and predict disease risk, yet integrating the full ML pipeline—from raw data ingestion through 

model deployment—remains challenging for non-programmers. In this work, we present “Reimagining 

Health System Efficiency,” a standalone desktop application built with Python and Tkinter that guides 

users through data upload, preprocessing, dimensionality reduction via PCA, multi-model training, 

visualization, and live inference in a single, coherent interface. We evaluate six classifiers such as 

K-Nearest Neighbors, Multinomial Naïve Bayes, Logistic Regression, Linear SVM, Random Forest, 

and an Advanced Extreme Learning Machine (ELM) variant on the Pima Indians Diabetes dataset. The 

ELM model, configured with 350 tanh-activated hidden neurons and ridge-regularized output weights, 

achieved an accuracy of 93.5%, outperforming all other baseline algorithms. Notably, ELM’s 

closed-form training enables sub-second model fitting, making it ideal for scenarios requiring rapid 

retraining or deployment on resource-constrained hardware. By democratizing access to sophisticated 

ML techniques through an intuitive GUI, our application empowers healthcare analysts to derive 

actionable insights without coding expertise. This platform not only accelerates model experimentation 

but also lays the groundwork for future extensions such as ELM ensembling or online learning to further 

enhance clinical predictive analytics. 

Keywords: Machine Learning, Health  Efficiency, K-Nearest Neighbors, Multinomial Naïve Bayes, 

Logistic Regression, Linear SVM, Random Forest, Extreme Learning Machine (ELM), Predictive 

Analysis. 

1.INTRODUCTION 

Health system efficiency has been a growing concern over the years, with global healthcare 

expenditures increasing at an alarming rate. In 2018, global healthcare spending reached $8.3 trillion, 

and by 2023, this number soared to over $12 trillion. This massive rise in spending is attributed to aging 

populations, the prevalence of chronic diseases, and advancements in medical technologies, which often 

demand more resources and higher costs. Yet, despite the increased investments, many health systems 

across the world continue to face inefficiencies in service delivery, patient care, and resource 

management. For instance, the World Health Organization (WHO) estimates that up to 20-40% of 

healthcare resources are wasted through inefficiencies, which could range from delays in care delivery 

to redundant or unnecessary procedures. The complexity of managing health data, particularly with the 

rise of electronic health records (EHRs), has added to the burden, as outdated systems and fragmented 

processes prevent seamless data integration and real-time decision-making. These inefficiencies not 

only drive-up costs but also impede the ability to provide timely and high-quality care, highlighting the 

need for more innovative and adaptive solutions, such as the integration of machine learning in 

healthcare systems. 
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2.LITERATURE SURVEY 

Lyon et al. (2021) [1] explored the potential of AI-driven optimization in the healthcare diagnostic 

process. Their study emphasized the significant role of AI in enhancing diagnostic accuracy and 

reducing human error, which traditionally slows down the process. By employing machine learning 

algorithms, the study highlighted improvements in decision-making, leading to more timely and 

accurate diagnoses. However, challenges such as data integration and system interoperability remain 

areas for improvement. Tripathi et al. (2021) [2] examined the evolving role of big data and AI in drug 

discovery. The authors discussed how AI-powered tools have accelerated the drug discovery process by 

analyzing vast datasets and identifying potential drug candidates more efficiently than traditional 

methods. While AI presents numerous advantages, the study also pointed out limitations in data 

handling and the complexity of integrating AI systems into existing pharmaceutical frameworks. Khan 

et al. (2023) [3] discussed the drawbacks of AI in the healthcare sector, emphasizing challenges such as 

data privacy, bias in AI algorithms, and the high cost of implementing AI solutions. The paper suggested 

potential solutions, including more robust data governance frameworks and continuous algorithm 

validation to minimize bias and improve trust in AI-driven healthcare solutions. 

Dileep and Gianchandani (2022) [4] focused on the use of AI in breast cancer screening and diagnosis. 

The study demonstrated how AI could improve early detection rates and reduce false positives in 

mammograms, leading to better patient outcomes. The authors also highlighted the need for ongoing 

training of AI models to account for new medical data and maintain high levels of diagnostic accuracy. 

Chandrashekar et al. (2020) [5] introduced a deep learning approach to generate contrast-enhanced CT 

angiograms without the need for intravenous contrast agents. The study underscored the potential of AI 

to reduce patient risk by minimizing exposure to contrast agents, while still maintaining high-quality 

imaging for diagnostic purposes. This innovation marked a significant step forward in non-invasive 

imaging techniques.  William et al. (2018) [6] assessed the accuracy of an AI-driven algorithm for 

detecting atrial fibrillation using smartphone technology. The iREAD study showed promising results, 

with the AI model achieving high accuracy rates in identifying atrial fibrillation, thus offering a 

convenient and accessible method for early detection of heart conditions, especially in remote or 

underserved populations. 

Li et al. (2020) [7] evaluated the use of AI to detect COVID-19 and community-acquired pneumonia 

using pulmonary CT scans. The study found that AI models could effectively distinguish between 

COVID-19 and other respiratory conditions, providing a valuable diagnostic tool during the pandemic. 

The authors also highlighted the importance of rapid AI adaptation to emerging diseases and updated 

data.Olive-Gadea et al. (2020) [8] developed a deep learning-based software capable of identifying 

large vessel occlusions on noncontrast CT scans. The study demonstrated that AI could significantly 

enhance the speed and accuracy of stroke diagnosis, enabling faster intervention and potentially 

improving patient outcomes in critical care settings. Lin et al. (2022) [9] discussed the role of AI-driven 

decision-making in the auxiliary diagnosis of epidemic diseases. The study focused on how AI models 

could analyze vast datasets in real-time to predict outbreaks and assist in the early diagnosis of diseases. 

By integrating machine learning techniques, healthcare systems could become more adaptive and 

responsive to emerging public health threats. Iqbal et al. (2022) [10] conducted a narrative review on 

the future of AI in neurosurgery. The authors concluded that AI holds great promise in areas such as 

surgical planning, real-time decision support, and postoperative care. However, the review also pointed 
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out the need for more extensive clinical validation of AI systems before they can be widely adopted in 

neurosurgical practices.  

Nguyen et al. (2018) [11] explored deep learning for sudden cardiac arrest detection in automated 

external defibrillators (AEDs). The study showed that AI models could significantly enhance AED 

functionality by improving the accuracy of sudden cardiac arrest detection, potentially saving lives in 

critical situations where rapid response is essential. Mostafa et al. (2022) [12] conducted a survey on 

AI techniques used for thoracic disease diagnosis via medical images. The study highlighted the 

advances in deep learning models that have improved diagnostic accuracy for conditions such as lung 

cancer and pneumonia. However, the survey also identified challenges related to the interpretability of 

AI models and the need for further research in this area. Comito et al. (2022) [13] discussed the 

application of AI-driven clinical decision support systems in enhancing disease diagnosis by exploiting 

patient similarity. Their research demonstrated how machine learning could identify patterns in patient 

data to offer personalized diagnostic and treatment options, improving overall patient care and 

operational efficiency in hospitals. 

 Brinker et al. (2019) [14] conducted a study comparing the diagnostic capabilities of deep neural 

networks to those of dermatologists in melanoma image classification. The results showed that AI 

outperformed human experts, marking a significant advancement in the use of AI for dermatological 

diagnostics and opening up new possibilities for remote or automated skin cancer screening. Santosh 

and Gaur (2021) [15] provided a comprehensive overview of AI and machine learning applications in 

public healthcare. They discussed how AI can address various public health issues, such as disease 

surveillance, outbreak prediction, and resource optimization, thereby improving health system 

efficiency on a large scale. The book emphasized the need for ethical AI practices and robust 

frameworks to ensure responsible implementation of these technologies in public health. 

3.PROPOSED METHODOLOGY 

The integration of machine learning (ML) techniques into healthcare systems has revolutionized the 

industry by enhancing the accuracy of disease prediction and patient care efficiency. This research 

focuses on developing a machine learning-based model to predict diseases using healthcare data. The 

study follows a structured methodology comprising data preprocessing, feature selection, model 

training, evaluation, and comparison. A detailed step-by-step explanation of the research procedure is 

as follows: 

Step 1: Upload SEMLHI Healthcare Dataset 

The research begins with data acquisition. The dataset is uploaded using a file dialog interface, allowing 

users to select a healthcare dataset from a predefined directory. The dataset contains patient-related 

attributes such as age, symptoms, medical history, and test results, which are used as input features for 

disease prediction. Upon successful loading of the dataset, a message is displayed to confirm the upload. 

The dataset is stored in a structured format using the pandas library, ensuring it can be efficiently 

processed in subsequent steps. 

Step 2: Data Preprocessing 

1. Handling Missing Values: Healthcare datasets often contain missing values due to 

incomplete patient records. To ensure the integrity of the data, missing values are replaced 
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with zeros. This prevents computational errors during model training while preserving the 

dataset's original structure. 

2. Duplicate Analysis and Removal: Redundant records can distort the predictive power of 

machine learning models. The dataset is examined for duplicate entries, which are 

removed to maintain data uniqueness. This step improves the generalization ability of the 

models by eliminating repetitive patterns. 

3. Correlation Analysis: A correlation matrix is generated to examine relationships between 

different features. Strongly correlated features may provide redundant information, 

potentially leading to model overfitting. A heatmap visualization using seaborn is plotted 

to display the correlation coefficients, helping researchers understand feature 

dependencies. 

4. Dimensionality Reduction using PCA: To optimize computational efficiency, Principal 

Component Analysis (PCA) is employed to reduce the dataset's dimensionality. PCA 

transforms high-dimensional data into a lower-dimensional space while preserving 

essential variance. This step removes noise and redundancy, leading to better 

generalization of the machine learning models. The dataset is reduced to eight principal 

components, ensuring the most critical information is retained. 

Step 3: Feature Selection 

After preprocessing, the dataset is split into input features (X) and the target variable (Y). The features 

represent patient attributes, while the target variable contains class labels indicating disease presence or 

absence. Proper feature selection ensures that only relevant information is used for model training, 

thereby improving prediction accuracy and model interpretability. 

Step 4: Train-Test Splitting 

The dataset is divided into training and testing subsets in an 80:20 ratio. The training set is used to train 

machine learning models, while the testing set evaluates model performance on unseen data. Train-test 

splitting prevents data leakage and ensures robust evaluation of predictive models. 

http://www.ijbar.org/
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Fig. 1: Proposed system architecture. 

Step 5: Model Building and Training 

1. K-Nearest Neighbors (KNN): KNN is an instance-based learning algorithm that classifies 

data points based on their nearest neighbors. It calculates distances between points and assigns 

labels based on majority voting. The model is trained with k=10, and predictions are generated 

on the test set. 

2. Multinomial Naive Bayes (MNB): MNB is a probabilistic classifier based on Bayes' theorem. 

It assumes feature independence and is widely used for categorical data classification. The 

MNB model is trained and tested on the dataset, and its accuracy is computed. 

3. Random Forest Classifier (RFC): RFC is an ensemble learning method that constructs 

multiple decision trees and aggregates their outputs. It improves classification accuracy by 

reducing overfitting. The trained RFC model is evaluated on the test dataset. 

4. Logistic Regression Classifier (LRC): Logistic regression is a statistical model that estimates 

probabilities using the logistic function. It is used to classify patient data into disease-positive 

or negative categories based on input features. The trained model's accuracy is recorded. 

5. Linear Support Vector Classifier (SVC): SVC is a machine learning algorithm that 

constructs a hyperplane to separate different classes in a high-dimensional space. The trained 

SVC model classifies test instances, and its prediction accuracy is computed. 

http://www.ijbar.org/
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Step 6: Advanced Extreme Learning Machine (ELM) Classifier: To enhance prediction accuracy, 

this research proposes an Extension Extreme Learning Machine (EELM) classifier. EELM is a neural 

network-based approach that leverages a randomly initialized hidden layer with fixed weights. It is 

computationally efficient and provides superior generalization compared to traditional classifiers. 

Model Training and Testing: The EELM model is trained using the same training dataset. Predictions 

are generated on the test dataset, and its classification accuracy is recorded. Unlike traditional models, 

EELM incorporates a multi-layer perceptron-based random layer to enhance learning capabilities. 

Step 7: Performance Comparison Graph 

To visualize model performance, an accuracy comparison graph is generated. The graph compares the 

prediction accuracies of KNN, MNB, RFC, LRC, Linear SVC, and ELM. The results indicate that the 

ELM model outperforms traditional classifiers in terms of predictive accuracy. 

Step 8: Prediction on Test Data 

The final step involves using the trained ELM model to make predictions on new test data. The model 

classifies each test instance as either disease-positive or disease-negative. A textual output is generated, 

displaying the prediction results. 

3.1 ELM Classifier  

Extreme Learning Machine is a rapid-training algorithm for single-hidden-layer feedforward networks 

that randomly initializes input-to-hidden weights and computes output weights in closed form. This 

leads to lightning-fast training—often orders of magnitude quicker than backpropagation—while 

retaining universal approximation capabilities. ELM’s main hyperparameter is the number of hidden 

neurons, which balances representational power against potential overfitting.  
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Fig. 2: ELM working flow. 

Although randomness introduces variance in performance, ELM serves as a compelling option for rapid 

prototyping or scenarios requiring frequent retraining. In this project, our ELM variant demonstrates 

competitive accuracy with near-instantaneous training times. 

4.RESULTS AND DISCUSSION 

4.1 Dataset description 

Here is a comprehensive description of the Pima Indians Diabetes dataset which is collected by the 

National Institute of Diabetes and Digestive and Kidney Diseases. They have considered only female 

patients of Pima Indian heritage, aged 21 and above. The main goal of this dataset is to predict the onset 

of diabetes within five years based on diagnostic measurements. 

1. Dataset Composition 

Total records: 768 patient cases. 

Features (8 numeric predictors + 1 binary target): 

Feature Name Data 

Type 

Units / 

Range 

Description 

Pregnancies Integer 0–17 Number of times pregnant. 

Glucose Integer mg/dL (0–

199) 

Plasma glucose concentration at 2-hour oral 

glucose tolerance test. Zeroes may indicate 

missing. 

http://www.ijbar.org/
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BloodPressure Integer mm Hg 

(0–122) 

Diastolic blood pressure. Zeroes may indicate 

missing. 

SkinThickness Integer mm (0–

99) 

Triceps skin fold thickness. Zeros treated as 

missing. 

Insulin Integer µU/mL 

(0–846) 

2-hour serum insulin. Zeros treated as missing. 

BMI Float kg/m² (0–

67.1) 

Body mass index, computed as weight 

(kg) / height² (m). 

DiabetesPedigreeFunction Float 0.078–

2.42 

Diabetes pedigree function; a measure of 

genetic predisposition. 

Age Integer years (21–

81) 

Patient age at time of test. 

Outcome Integer {0, 1} Class label: 1 = tested positive for diabetes, 

0 = negative. 

 

2. Missing & Special Values 

Many features (Glucose, BloodPressure, SkinThickness, Insulin, BMI) contain zeros that are 

physiologically impossible and thus treated as missing. In preprocessing, these zeros are 

imputed (e.g., replaced with 0 in your pipeline, but could also be replaced with means/medians 

or handled with more sophisticated imputation). 

3. Statistical Summary (per feature) 

The dataset provides various features relevant to predicting the onset of diabetes. On average, 

individuals have about 3.8 pregnancies, with a median of 3 and a range between 0 and 17. 

Glucose levels average around 120 mg/dL, with the interquartile range approximately between 

99 and 141 mg/dL. Blood pressure averages 69 mm Hg, although around 35% of the data points 

are zeros, suggesting missing or unrecorded values. Both SkinThickness and Insulin features 

are highly skewed with a large proportion of zeros, indicating possible issues with data quality 

or measurement consistency. BMI has a mean of 32 kg/m², with most values falling between 

26 and 36. The Diabetes Pedigree Function, which reflects genetic influence, has a mean of 

0.47 and is right-skewed. Age shows a mean of 33 years and follows a roughly uniform 

distribution. 

4. Typical Usage & Considerations 

The dataset is commonly used for binary classification tasks, particularly for predicting the 

onset of diabetes. Feature scaling is important, especially for algorithms like K-Nearest 

Neighbors (KNN), Support Vector Machines (SVM), and Extreme Learning Machines (ELM), 

which are sensitive to the scale of input data. Additionally, dimensionality reduction techniques 

such as Principal Component Analysis (PCA) can be beneficial in addressing multicollinearity 

and reducing noise introduced by features that may act as proxies for missing values. 
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By understanding each variable’s meaning, distribution, and quirks (especially those zero-coded 

“missing” values), you can make informed choices about imputation, feature engineering, and model 

selection to maximize predictive performance on this well-studied healthcare dataset. 

 

4.2 Results description 

Fig. 3 is a bar chart appears with six vertical bars labeled along the x-axis (KNN, MNB, RFC, LRC, 

Linear SVC, Advanced ELM) and accuracy percentage on the y-axis. The height of each bar reflects its 

corresponding accuracy. This visual makes it immediately clear that advanced ELM outperforms the 

other ML models. 

 

Fig. 3: Performance comparison of obtained accuracy values using ML models. 
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Fig. 4: Sample predictions on test data. 

Fig. 4 shows the text console after loading a new test CSV and clicking “Prediction on Test Data.” Each 

line prints the feature vector of a test case followed by “Disease Prediction Result: Positive” or 

“Negative.” This gives end users a tangible, row-by-row view of how the chosen model classifies 

unseen patient records. 

5.CONCLUSION 

This research demonstrated a cohesive, end-to-end desktop application of “Reimagining Health System 

Efficiency”, that integrates data ingestion, preprocessing, multi-model training, visualization, and live 

inference into a single, Tkinter-based GUI. Through systematic experimentation on the Pima Indians 

Diabetes dataset, six classifiers were evaluated: KNN, MNB, LRC, Linear SVC, RFC, and Advanced 

ELM variant. After hyperparameter tuning (350 hidden nodes, tanh activation) and regularization via 

ridge-regression for the output weights, the Advanced ELM achieved an accuracy of 93.5 %, 

outperforming all other models tested. This superior performance highlights several key strengths of 

the Advanced ELM approach. First, by randomizing the hidden-layer weights and solving for the output 

layer in closed-form, ELM dramatically reduces training time—sub-second on datasets of this size—

without sacrificing predictive power. Second, its single-step training avoids the iterative gradient 

updates of backpropagation, making it robust against local minima and learning-rate sensitivities. Third, 

despite its rapid training, ELM maintained excellent generalization on unseen test samples, as evidenced 

by its clear separation of high- and low-risk cases in the probability scatter plot. Finally, these results 

underscore Advanced ELM’s promise as a lightweight yet powerful classifier for real-time clinical 

decision support. Its combination of speed, simplicity, and accuracy makes it particularly well suited to 

environments where models must be retrained frequently on new data or deployed on 

resource-constrained hardware. By elevating ELM to the top performer in our comparison, this project 

not only showcases a novel application of extreme learning but also sets the stage for future 

enhancements—such as ensembling multiple ELM instances or exploring other activation functions—

to further advance healthcare analytics. 
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